Experimental Gaussian Boson sampling

Sci Bull (Beijing). 2019 Apr 30;64(8):511-515. doi: 10.1016/j.scib.2019.04.007. Epub 2019 Apr 2.

Abstract

Gaussian Boson sampling (GBS) provides a highly efficient approach to make use of squeezed states from parametric down-conversion to solve a classically hard-to-solve sampling problem. The GBS protocol not only significantly enhances the photon generation probability, compared to standard Boson sampling with single photon Fock states, but also links to potential applications such as dense subgraph problems and molecular vibronic spectra. Here, we report the first experimental demonstration of GBS using squeezed-state sources with simultaneously high photon indistinguishability and collection efficiency. We implement and validate 3-, 4- and 5-photon GBS with high sampling rates of 832, 163 and 23 kHz, respectively, which is more than 4.4, 12.0, and 29.5 times faster than the previous experiments. Further, we observe a quantum speed-up on a NP-hard optimization problem when comparing with simulated thermal sampler and uniform sampler.

Keywords: Boson sampling; Gaussian Boson sampling; Quantum advantage; Quantum approximate optimization; Quantum information; Squeezed state.