Effect of Energy Provision Strategy on Rumen Fermentation Characteristics, Bacterial Diversity and Community Composition

Bioengineering (Basel). 2023 Jan 12;10(1):107. doi: 10.3390/bioengineering10010107.

Abstract

This study was conducted to explore the rumen fermentation characteristics, bacterial diversity, and community composition of Hu sheep under four energy provision strategies. Ninety-six Hu sheep (body weight: 17.78 ± 1.24 kg) were equally assigned to four energy provision strategies: (1) low-energy diet for the whole finishing stage (LL); (2) high-energy diet for the whole finishing stage (HH); (3) low-energy diet in the early finishing stage and high-energy diet in the late finishing stage (LH); (4) high-energy diet in the early finishing stage and low-energy diet in the late finishing stage (HL). The results showed that the proportion of acetate was lower in the HH group than that in the HL group, whereas the opposite result was observed for the butyrate proportion (p < 0.05). The Chao 1, observed species, PD whole tree, and Shannon index of the rumen bacteria were higher in the LL group than that in the HH group (p < 0.05). The taxonomic annotations revealed that the Patescibacteria, Rikenellaceae RC9 gut group, Christensenellaceae R-7 group, and Anaeroplasma abundances were higher in the HL group than that in the HH group, and the opposite results were observed regarding the relative abundances of Selenomonas and Anaerovibrio (p < 0.05). The relative abundances of Spirochaetota and Treponema were higher in the LH group than that in the HH group (p < 0.05). Moreover, the analysis of similarity (ANOSIM) showed significant differences between groups (R = 0.6792 and p = 0.001). This study indicates that the energy provision strategy had little impact on the rumen fermentation characteristics, while it heavily affected the rumen bacterial diversity and community composition. This study may provide insight into the rumen fermentation characteristics and bacterial community under routine finishing models and contribute to the optimization of energy provision strategies of Hu sheep.

Keywords: bacterial community composition; diet shift; energy provision strategy; rumen bacterial diversity; rumen fermentation characteristic.