This study developed a system to quantify the lumbar spine's bone mineral density (BMD) in two and three dimensions for osteoporosis screening using quantitative CT images. Measuring the two-dimensional BMD could reproduce the BMD measurement performed in dual-energy X-ray absorptiometry, and an accurate diagnosis of osteoporosis was possible.
Purpose: To date, the assessment of bone mineral density (BMD) using CT images has been made in three dimensions, leading to errors in detecting osteoporosis based on the two-dimensional assessments of BMD using dual-energy X-ray absorptiometry (DXA-BMD). Herein, we aimed to develop a system that measures two- and three-dimensional lumbar BMD from quantitative CT images and validated the accuracy of the system in diagnosing osteoporosis with regard to the DXA classification.
Methods: Fifty-nine pairs of spinal CT and DXA images were analyzed. First, the three-dimensional BMD was measured at the axial slice of the L1 vertebra on CT images (L1-vBMD). Then, the L1-L4 vertebrae were segmented from the CT images to measure the three-dimensional BMD at the trabecular region of the L1-L4 vertebral bodies (CT-vBMD). Lastly, the segmented vertebrae were projected onto the coronal plane to measure the two-dimensional BMD (CT-aBMD). Each parameter was correlated with DXA-BMD, and the receiver operating characteristic (ROC) curve to diagnose osteoporosis was assessed.
Results: The correlation coefficients of DXA-BMD with L1-vBMD, CT-vBMD, and CT-aBMD were 0.364, 0.456, and 0.911, respectively (all p < 0.01). In the ROC curve analysis to diagnose osteoporosis, the area under the curve for CT-aBMD (0.941) was significantly higher than those for L1-vBMD (0.582) and CT-vBMD (0.657) (both p < 0.01).
Conclusion: Compared with L1-vBMD and CT-vBMD, CT-aBMD could accurately predict DXA-BMD and detect patients with osteoporosis. Given that our method can quantify BMD in both two and three dimensions, it could be used to screen for osteoporosis from quantitative CT images.
Keywords: Areal bone mineral density; Artificial intelligence; Computer programming; Deep learning; Quantitative CT (QCT); Volumetric analysis.
© 2023. International Osteoporosis Foundation and Bone Health and Osteoporosis Foundation.