Background: The classification of the sub-family Schizothoracinae has been debatable due to the overlap in morphological characters. There are discrepancies between classical taxonomy and molecular taxonomy, as well. In the present study, mitochondrial genes CO-I and Cyt b were sequenced to elucidate the phylogenetic status of three species of the genus Schizothorax.
Methods and results: In total, 29 samples of three species viz., S. plagiostomus, S. progastus, and S. richardsonii, were collected from rivers of Uttarakhand, India. For phylogenetic analyses, 40 sequences of CO-I and 41 sequences of Cyt b of Schizothoracinae species were downloaded from NCBI. The highest genetic divergence based on CO-I (16.08%) is between S. plagiostomus and Ptychobarbus dipogon, while the lowest divergence (0.00%) is between 10 pairs of species. The highest divergence based on Cyt b (19.43%), is between S. niger and Gymnocypris eckloni, while the lowest divergence (0.00%) is between four pairs of species. The divergence (0.00% for CO-I and 2.38% for Cyt b) between S. chongi and S. kozlovi, seems a case of convergent molecular evolution of the CO-I gene and in this case, CO-I alone cannot be used to differentiate these two species.
Conclusion: The simultaneous use of two molecular markers along with morphomeristic data is a better strategy for the classification of the sub-family Schizothoracinae. These results will be a resource dataset for determining the taxonomical status of Schizothoracine species and will help in the conservation and commercial production of these commercially important fish species.
Keywords: Cytochrome b; Cytochrome c oxidase I; Mitochondrial DNA; Phylogeny; Schizothoracinae.
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.