Rapid and sensitive detection of microRNAs is of great importance in biological researches and cancer diagnosis. Herein, we proposed a novel homogeneous electrochemical sensor to detect microRNA-21 (miRNA-21) using functionalized magnetic nanoparticles combined with enzyme-assisted signal amplification. The biotinylated capture probe (CP) labeled magnetic nanoparticles can capture miRNA-21 and introduce streptavidin-conjugated hydroxyapatite (HAP) nanoparticles. In the presence of miRNA-21, hybridization between RNA and DNA results in the formation of RNA/DNA duplexes, and then duplex-specific nuclease (DSN) cleave the duplexes to digest the capture chain and release the miRNA-21 in a loop. Meanwhile, the HAP nanoparticles strip from the magnetic nanoparticles and electrochemical signal by the reaction of HAP with molybdate is changed. The current variation before and after incubation with miRNA-21 is linearly correlated with the miRNA-21 concentration between 1 aM and 1 pM with a low detection limit (LOD) of 0.27 aM. Remarkably, the expression of miRNA-21 in human serum and different cell lysate was successfully performed, which fully demonstrates the great practical potentials in biomedical diagnostics and clinical therapeutics.
Keywords: Duplex-specific nuclease; Enzyme-assisted signal amplification; Homogeneous electrochemical sensor; Magnetic nanoparticles; MiRNA-21.
Copyright © 2023 Elsevier B.V. All rights reserved.