Polymeric microneedles fabricated via two-photon polymerization (2PP) lithography enable safe medical access to the inner ear. Herein, the material class for 2PP-lithography-based microneedles is expanded by pyrolyzing 2PP-fabricated polymeric microneedles, resulting in glassy carbon microneedles. During pyrolysis the microneedles shrink up to 81% while maintaining their complex shape when the exposed surface-area-to-volume ratio (SVR) is 0.025 < SVR < 0.04, for the temperature history protocol used herein. The derived glassy carbon is confirmed with energy-dispersive X-ray spectroscopy and Raman spectroscopy. The pyrolyzed glassy carbon has Young's modulus 9.0 GPa. As a brittle material, the strength is stochastic. Using the two-parameter Weibull distribution, the glassy carbon has Weibull modulus of 3.1 and characteristic strength of 710 MPa. The viscoelastic response has characteristic time scale of about 10000 s. In vitro experiments demonstrate that the glassy carbon microneedles introduce controlled perforations across the guinea pig round window membrane (RWM) from the middle ear space into the inner ear, without damaging the microneedle. The resultant controlled perforation of RWM is known to enhance diffusion of therapeutics across the RWM in a predictable fashion. Hence, the glassy carbon microneedles can be deployed for mediating inner ear delivery.
Keywords: inner ear delivery; microneedles; nanoscribe; pyrolysis; two-photon photolithography.