Adoptive transfer of T-cells expressing chimeric antigen receptors (CAR) has shown remarkable clinical efficacy against advanced B-cell malignancies. Nonetheless, the field of CAR T-cells is currently facing several major challenges. In particular, the CAR T-cell strategy has not yet produced favorable clinical responses when targeting solid tumors. In this context, it is of paramount importance to understand the determinants that limit the efficacy of T-cell-based immunotherapy. Characterization of CAR T-cells is usually based on flow cytometry and whole-transcriptome profiling. These approaches have been very valuable to determine intrinsic elements that condition T-cell ability to proliferate and expand. However, they do not take into account spatial and kinetic aspects of T-cell responses. In particular, in order to control tumor growth, CAR T-cells need to enter into the tumor, migrate within a complex tumor environment, and form productive conjugates with their targets. Advanced imaging techniques combined with innovative preclinical models represent promising tools to uncover the dynamics of CAR T-cells. In this review, we will discuss recent results on the biology of engineered T-cells that have been obtained with real-time imaging microscopy. Important notions have emerged from these imaging-based studies, such as the multi-killing potential of CAR T-cells. Finally, we will highlight how imaging techniques combined with other tools can solve remaining unresolved questions in the field of engineered T-cells.
Keywords: CAR T-cells; Confocal; Cytotoxicity; Imaging; Immune synapse; Two-photon.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.