Entanglement detection with artificial neural networks

Sci Rep. 2023 Jan 28;13(1):1562. doi: 10.1038/s41598-023-28745-3.

Abstract

Quantum entanglement is one of the essential resources involved in quantum information processing tasks. However, its detection for usage remains a challenge. The Bell-type inequality for relative entropy of coherence serves as an entanglement witness for pure entangled states. However, it does not perform reliably for mixed entangled states. This paper constructs a classifier by employing the relationship between coherence and entanglement for supervised machine learning methods. This method encodes multiple Bell-type inequalities for the relative entropy of coherence into an artificial neural network to detect the entangled and separable states in a quantum dataset.