Aims: The current gold standard comprehensive assessment of coronary microvascular dysfunction (CMD) is through a limited-access invasive catheterization lab procedure. We aimed to develop a point-of-care tool to assist clinical guidance in patients presenting with chest pain and/or an abnormal cardiac functional stress test and with non-obstructive coronary artery disease (NOCAD).
Methods and results: This study included 1893 NOCAD patients (<50% angiographic stenosis) who underwent CMD evaluation as well as an electrocardiogram (ECG) up to 1-year prior. Endothelial-independent CMD was defined by coronary flow reserve (CFR) ≤2.5 in response to intracoronary adenosine. Endothelial-dependent CMD was defined by a maximal percent increase in coronary blood flow (%ΔCBF) ≤50% in response to intracoronary acetylcholine infusion. We trained algorithms to distinguish between the following outcomes: CFR ≤2.5, %ΔCBF ≤50, and the combination of both. Two classes of algorithms were trained, one depending on ECG waveforms as input, and another using tabular clinical data. Mean age was 51 ± 12 years and 66% were females (n = 1257). Area under the curve values ranged from 0.49 to 0.67 for all the outcomes. The best performance in our analysis was for the outcome CFR ≤2.5 with clinical variables. Area under the curve and accuracy were 0.67% and 60%. When decreasing the threshold of positivity, sensitivity and negative predictive value increased to 92% and 90%, respectively, while specificity and positive predictive value decreased to 25% and 29%, respectively.
Conclusion: An artificial intelligence-enabled algorithm may be able to assist clinical guidance by ruling out CMD in patients presenting with chest pain and/or an abnormal functional stress test. This algorithm needs to be prospectively validated in different cohorts.
Keywords: AI; Coronary circulation; Coronary microvascular dysfunction; ECG; Machine learning.
© The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.