High autophagic vesicle content marks facultative stem cells of the gut

Autophagy. 2023 Sep;19(9):2611-2612. doi: 10.1080/15548627.2023.2174297. Epub 2023 Feb 14.

Abstract

Understanding how macroautophagy/autophagy contributes to tissue homeostasis is essential for understanding organismal health. The intestinal epithelium is an ideal model to define mechanisms that regulate tissue homeostasis because it houses well-defined populations of intestinal stem cells. Active intestinal stem cells (a-ISCs) are defined by their active cycling and self-renewal during homeostasis, which supports continual tissue turnover in vivo. In vitro, this is observed as long-term organoid formation capacity. A second population of stem cells, called "facultative intestinal stem cells" (f-ISCs), are defined by their ability to 1) survive tissue damage that depletes the injury-sensitive a-ISCs and 2) reenter the cell cycle to repopulate the a-ISC compartment and regenerate the epithelium. The prospective identification of f-ISCs has been challenging, as cells expressing markers of multiple differentiated lineages, particularly secretory lineages, appear to function as f-ISCs in diverse injury contexts. We evaluated cell age (defined as time elapsed after cell cycle exit) and autophagic state (marked by autophagic vesicle content) as molecular features that may be related to f-ISC capacity. We found that autophagic state, but not cell age, prospectively identifies f-ISCs within multiple lineages. As such, we describe autophagy as a lineage-agnostic marker of f-ISC capacity in the mammalian intestine.

Keywords: Autophagy; facultative intestinal stem cell; intestinal regeneration; organoid formation; paligenosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autophagy*
  • Cell Differentiation
  • Intestinal Mucosa
  • Intestines
  • Mammals
  • Prospective Studies
  • Stem Cells*