Federated Learning in Health care Using Structured Medical Data

Adv Kidney Dis Health. 2023 Jan;30(1):4-16. doi: 10.1053/j.akdh.2022.11.007.

Abstract

The success of machine learning-based studies is largely subjected to accessing a large amount of data. However, accessing such data is typically not feasible within a single health system/hospital. Although multicenter studies are the most effective way to access a vast amount of data, sharing data outside the institutes involves legal, business, and technical challenges. Federated learning (FL) is a newly proposed machine learning framework for multicenter studies, tackling data-sharing issues across participant institutes. The promise of FL is simple. FL facilitates multicenter studies without losing data access control and allows the construction of a global model by aggregating local models trained from participant institutes. This article reviewed recently published studies that utilized FL in clinical studies with structured medical data. In addition, challenges and open questions in FL in clinical studies with structured medical data were discussed.

Publication types

  • Review
  • Research Support, N.I.H., Extramural

MeSH terms

  • Academies and Institutes*
  • Commerce
  • Delivery of Health Care
  • Health Facilities*
  • Humans
  • Information Dissemination