Multicomponent environmental models have increasingly found their way into archaeological research. Mostly, these models aim to understand human patterns as a result of past climatic and environmental conditions over long-term periods. However, major limitations are the low spatial and temporal resolution of the environmental data, and hence the rather static model output. Particular challenges are thus the number of chosen variables, the comprehensiveness of the explanatory parameters, and the integration of socio-cultural decision-making into the model. Here, we present a novel approach to generate annually resolved landcover variability using a broad variety of climatic, geological, hydrological, topographical, and dendrochronological data composites (Palmer Drought Severity Index (PDSI)). We analyze land-use and settlement capacity and vulnerability to estimate the socio-cultural transformation processes at Basel (Switzerland) during the Late Antiquity and the Early Middle Ages. Our results highlight the potential of the PDSI to predict local river run-off behavior from catchment analyses. The model enables to trace landcover as well as socio-cultural response to climatic variability and subsequent adaptation to trends in environmental vulnerability. This approach further helps to understand population dynamics in the periphery of the Roman administrative boundaries and to revise traditional archaeological narratives of large-scale population replacements during the so-called Migration Period.
Copyright: © 2023 Kempf, Depaermentier. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.