Objective: Despite its relatively low prevalence, schizophrenia has a high burden of illness due to its lifelong effects and the fact that it is often refractory to psychotropic treatment. This review investigated how neurosurgical interventions, primarily neuromodulation through deep brain stimulation (DBS), can mitigate treatment-refractory schizophrenia. Pathophysiological data and ongoing clinical trials were reviewed to suggest which targets hold promise for neurosurgical efficacy.
Methods: A systematic review of the literature was conducted via an electronic search of the PubMed, Scopus, and Web of Science databases. Included papers were human or animal studies of neurosurgical interventions for schizophrenia conducted between 2012 and 2022. An electronic search of ClinicalTrials.gov and the International Clinical Trials Registry Platform was conducted to find ongoing clinical trials. The ROBINS-I (Risk of Bias in Nonrandomized Studies of Interventions) assessment tool was used to evaluate risk of bias in the study.
Results: Eight human and 2 rat studies were included in the review. Of the human studies, 5 used DBS targeting the nucleus accumbens, subgenual anterior cingulate cortex, habenula, and substantial nigra pars reticulata. The remaining 3 human studies reported the results of subcaudate tractotomies and anterior capsulotomies. The rat studies investigated DBS of the nucleus accumbens and medial prefrontal cortex. Overall, human studies demonstrated long-term reduction in Positive and Negative Syndrome Scale scores in many participants, with a low incidence of surgical and psychological side effects. The rat studies demonstrated improved prepulse and latent inhibition in the targeted areas after DBS.
Conclusions: As identified in this review, recent studies have investigated the potential effects of therapeutic DBS for schizophrenia, with varying results. DBS targets that have been explored include the hippocampus, subgenual anterior cingulate cortex, habenula, substantia nigra pars reticulata, and medial prefrontal cortex. In addition to DBS, other neuromodulatory techniques such as neuroablation have been studied. Current evidence suggests that neuroablation in the subcaudate tract and anterior capsulotomy may be beneficial for some patients. The authors recommend further exploration of neuromodulation for treatment-refractory schizophrenia, under the condition that rigorous standards be upheld when considering surgical candidacy for these treatments, given that their safety and efficacy remain to be determined.
Keywords: clinical trial; deep brain stimulation; dopamine hypothesis; neuromodulation; schizophrenia.