LY6E is an antiviral protein that inhibits coronavirus entry. Its expression in immune cells allows mice to control murine coronavirus infection. However, it is not known which immune cell subsets mediate this control or whether LY6E protects mice from SARS-CoV-2. In this study, we used tissue-specific Cre recombinase expression to ablate Ly6e in distinct immune compartments or in all epiblast-derived cells, and bone marrow chimeras to target Ly6e in a subset of radioresistant cells. Mice lacking Ly6e in Lyz2 -expressing cells and radioresistant Vav1 -expressing cells were more susceptible to lethal murine coronavirus infection. Mice lacking Ly6e globally developed clinical disease when challenged with the Gamma (P.1) variant of SARS-CoV-2. By contrast, wildtype mice and mice lacking type I and type III interferon signaling had no clinical symptoms after SARS-CoV-2 infection. Transcriptomic profiling of lungs from SARS-CoV-2-infected wildtype and Ly6e knockout mice revealed a striking reduction of secretory cell-associated genes in infected knockout mice, including Muc5b , an airway mucin-encoding gene that may protect against SARS-CoV-2-inflicted respiratory disease. Collectively, our study reveals distinct cellular compartments in which Ly6e confers cell intrinsic antiviral effects, thereby conferring resistance to disease caused by murine coronavirus and SARS-CoV-2.