Delay discounting is a measure of impulsive choice relevant in adolescence as it predicts many real-life outcomes, including substance use disorders, obesity, and academic achievement. However, the functional networks underlying individual differences in delay discounting during youth remain incompletely described. Here we investigate the association between multivariate patterns of functional connectivity and individual differences in impulsive choice in a large sample of youth. A total of 293 youth (9-23 years) completed a delay discounting task and underwent resting-state fMRI at 3T. A connectome-wide analysis using multivariate distance-based matrix regression was used to examine whole-brain relationships between delay discounting and functional connectivity was then performed. These analyses revealed that individual differences in delay discounting were associated with patterns of connectivity emanating from the left dorsal prefrontal cortex, a hub of the default mode network. Delay discounting was associated with greater functional connectivity between the dorsal prefrontal cortex and other parts of the default mode network, and reduced connectivity with regions in the dorsal and ventral attention networks. These results suggest that delay discounting in youth is associated with individual differences in relationships both within the default mode network and between the default mode and networks involved in attentional and cognitive control.