Cost-effectiveness analysis of computer-aided detection systems for colonoscopy in Japan

Dig Endosc. 2023 Nov;35(7):891-899. doi: 10.1111/den.14532. Epub 2023 Mar 6.

Abstract

Objectives: The usefulness of computer-aided detection systems (CADe) for colonoscopy has been increasingly reported. In many countries, however, data on the cost-effectiveness of their use are lacking; consequently, CADe for colonoscopy has not been covered by health insurance. We aimed to evaluate the cost-effectiveness of colonoscopy using CADe in Japan.

Methods: We conducted a simulation model analysis using Japanese data to examine the cost-effectiveness of colonoscopy with and without CADe for a population aged 40-74 years who received colorectal cancer (CRC) screening with a fecal immunochemical test (FIT). The rates of receiving FIT screening and colonoscopy following a positive FIT were set as 40% and 70%, respectively. The sensitivities of FIT for advanced adenomas and CRC Dukes' A-D were 26.5% and 52.8-78.3%, respectively. CADe colonoscopy was judged to be cost-effective when its incremental cost-effectiveness ratio (ICER) was below JPY 5,000,000 per quality-adjusted life-years (QALYs) gained.

Results: Compared to conventional colonoscopy, CADe colonoscopy showed a higher QALY (20.4098 vs. 20.4088) and lower CRC incidence (2373 vs. 2415 per 100,000) and mortality (561 vs. 569 per 100,000). When the CADe cost was set at JPY 1000-6000, the ICER per QALY gained for CADe colonoscopy was lower than JPY 5,000,000 (JPY 796,328-4,971,274). The CADe cost threshold at which the ICER for CADe colonoscopy exceeded JPY 5,000,000 was JPY 6040.

Conclusions: Computer-aided detection systems for colonoscopy has the potential to be cost-effective when the CADe cost is up to JPY 6000. These results suggest that the insurance reimbursement of CADe for colonoscopy is reasonable.

Keywords: colonoscopy; colorectal cancer screening; computer-aided detection; cost-effectiveness; fecal immunochemical test.

MeSH terms

  • Colonoscopy
  • Colorectal Neoplasms* / diagnostic imaging
  • Computers
  • Cost-Benefit Analysis
  • Cost-Effectiveness Analysis*
  • Early Detection of Cancer / methods
  • Humans
  • Japan