Objective: To assess the efficacy and safety of a dual-hormone (DH [insulin and glucagon]) closed-loop system compared to a single-hormone (SH [insulin only]) closed-loop system in adolescents with type 1 diabetes.
Methods: This was a 26-hour, two-period, randomized, crossover, inpatient study involving 11 adolescents with type 1 diabetes (nine males [82%], mean ± SD age 14.8 ± 1.4 years, diabetes duration 5.7 ± 2.3 years). Except for the treatment configuration of the DiaCon Artificial Pancreas: DH or SH, experimental visits were identical consisting of: an overnight stay (10:00 pm until 7:30 am), several meals/snacks, and a 45-minute bout of moderate intensity continuous exercise. The primary endpoint was percentage of time spent with sensor glucose values below range (TBR [<3.9 mmol/L]) during closed-loop control over the 26-h period (5:00 pm, day 1 to 7:00 pm, day 2).
Results: Overall, there were no differences between DH and SH for the following glycemic outcomes (median [IQR]): TBR 1.6 [0.0, 2.4] vs. 1.28 [0.16, 3.19]%, p=1.00; time in range (TIR [3.9-10.0 mmol/L]) 68.4 [48.7, 76.8] vs. 75.7 [69.8, 87.1]%, p=0.08; and time above range (TAR [>10.0 mmol/L]) 28.1 [18.1, 49.8] vs. 23.3 [12.3, 27.2]%, p=0.10. Mean ( ± SD) glucose was higher during DH than SH (8.7 ( ± 3.2) vs. 8.1 ( ± 3.0) mmol/L, p<0.001) but coefficient of variation was similar (34.8 ( ± 6.8) vs. 37.3 ( ± 8.6)%, p=0.20). The average amount of rescue carbohydrates was similar between DH and SH (6.8 ( ± 12.3) vs. 9.5 ( ± 15.4) grams/participant/visit, p=0.78). Overnight, TIR was higher, TAR was lower during the SH visit compared to DH. During and after exercise (4:30 pm until 7 pm) the SH configuration produced higher TIR, but similar TAR and TBR compared to the DH configuration.
Conclusions: DH and SH performed similarly in adolescents with type 1 diabetes during a 26-hour inpatient monitoring period involving several metabolic challenges including feeding and exercise. However, during the night and around exercise, the SH configuration outperformed DH.
Keywords: adolescents; advanced hybrid closed-loop; artificial pancreas; dual-hormone; moderate intensity continuous exercise; non-linear model predictive control; type 1 diabetes mellitus.
Copyright © 2023 Lindkvist, Laugesen, Reenberg, Ritschel, Svensson, Jørgensen, Nørgaard and Ranjan.