Background: Tumor intracellular programmed cell death ligand-1 (PDL1) mediates pathologic signals that regulate clinical treatment responses distinctly from surface-expressed PDL1 targeted by αPDL1 immune checkpoint blockade antibodies.
Methods: We performed a drug screen for tumor cell PDL1 depleting drugs that identified Food and Drug Administration (FDA)-approved chlorambucil and also 9-[2-(phosphonomethoxy)ethyl] guanine. We used in vitro and in vivo assays to evaluate treatment and signaling effects of pharmacological tumor PDL1 depletion focused on chlorambucil as FDA approved, alone or plus αPDL1.
Results: PDL1-expressing mouse and human ovarian cancer lines and mouse melanoma were more sensitive to chlorambucil-mediated proliferation inhibition in vitro versus corresponding genetically PDL1-depleted lines. Orthotopic peritoneal PDL1-expressing ID8agg ovarian cancer and subcutaneous B16 melanoma tumors were more chlorambucil-sensitive in vivo versus corresponding genetically PDL1-depleted tumors. Chlorambucil enhanced αPDL1 efficacy in tumors otherwise αPDL1-refractory, and improved antitumor immunity and treatment efficacy in a natural killer cell-dependent manner alone and plus αPDL1. Chlorambucil-mediated PDL1 depletion was relatively tumor-cell selective in vivo, and treatment efficacy was preserved in PDL1KO hosts, demonstrating tumor PDL1-specific treatment effects. Chlorambucil induced PDL1-dependent immunogenic tumor cell death which could help explain immune contributions. Chlorambucil-mediated PDL1 reduction mechanisms were tumor cell-type-specific and involved transcriptional or post-translational mechanisms, including promoting PDL1 ubiquitination through the GSK3β/β-TRCP pathway. Chlorambucil-mediated tumor cell PDL1 depletion also phenocopied genetic PDL1 depletion in reducing tumor cell mTORC1 activation and tumor initiating cell content, and in augmenting autophagy, suggesting additional treatment potential.
Conclusions: Pharmacological tumor PDL1 depletion with chlorambucil targets tumor-intrinsic PDL1 signaling that mediates treatment resistance, especially in αPDL1-resistant tumors, generates PDL1-dependent tumor immunogenicity and inhibits tumor growth in immune-dependent and independent manners. It could improve treatment efficacy of selected agents in otherwise treatment-refractory, including αPDL1-refractory cancers, and is rapidly clinically translatable.
Keywords: Combined Modality Therapy; Costimulatory and Inhibitory T-Cell Receptors; Drug Evaluation, Preclinical; Immunotherapy; Melanoma.
© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.