The neutron skin of atomic nuclei impacts the structure of neutron-rich nuclei, the equation of state of nucleonic matter, and the size of neutron stars. Here we predict the neutron skin of selected light- and medium-mass nuclei using coupled-cluster theory and the auxiliary field diffusion Monte Carlo method with two- and three-nucleon forces from chiral effective field theory. We find a linear correlation between the neutron skin and the isospin asymmetry in agreement with the liquid-drop model and compare with data. We also extract the linear relationship that describes the difference between neutron and proton radii of mirror nuclei and quantify the effect of charge symmetry breaking terms in the nuclear Hamiltonian. Our results for the mirror-difference charge radii and binding energies per nucleon agree with existing data.