Epithelial ovarian cancer (EOC) is a polyfactorial process associated with alterations in metabolic pathways. A high-performance screening tool for EOC is in high demand to improve prognostic outcome but is still missing. Here, a concave octahedron Mn2 O3 /(Co,Mn)(Co,Mn)2 O4 (MO/CMO) composite with a heterojunction, rough surface, hollow interior, and sharp corners is developed to record metabolic patterns of ovarian tumors by laser desorption/ionization mass spectrometry (LDI-MS). The MO/CMO composites with multiple physical effects induce enhanced light absorption, preferred charge transfer, increased photothermal conversion, and selective trapping of small molecules. The MO/CMO shows ≈2-5-fold signal enhancement compared to mono- or dual-enhancement counterparts, and ≈10-48-fold compared to the commercialized products. Subsequently, serum metabolic fingerprints of ovarian tumors are revealed by MO/CMO-assisted LDI-MS, achieving high reproducibility of direct serum detection without treatment. Furthermore, machine learning of the metabolic fingerprints distinguishes malignant ovarian tumors from benign controls with the area under the curve value of 0.987. Finally, seven metabolites associated with the progression of ovarian tumors are screened as potential biomarkers. The approach guides the future depiction of the state-of-the-art matrix for intensive MS detection and accelerates the growth of nanomaterials-based platforms toward precision diagnosis scenarios.
Keywords: diagnostics; epithelial ovarian cancer; heterostructures; mass spectrometry; metabolites; metal oxides.
© 2023 Wiley-VCH GmbH.