Background: Despite the development of iterative reconstruction (IR) in diagnostic imaging, CBCT are generally reconstructed with filtered back projection (FBP) in radiotherapy. Varian medical systems, recently released with their latest Halcyon® V2.0 accelerator, a new IR algorithm for CBCT reconstruction.
Purpose: To assess the image quality of radiotherapy CBCT images reconstructed with FBP and an IR algorithm.
Methods: Three CBCT acquisition modes (head, thorax and pelvis large) available on a Halcyon® were assessed. Five acquisitions were performed for all modes on an image quality phantom and reconstructed with FBP and IR. Task-based image quality assessment was performed with noise power spectrum (NPS), task-based transfer function (TTF) and detectability index (d'). To illustrate the image quality obtained with both reconstruction types, CBCT acquisitions were made on 6 patients.
Results: The noise magnitude and the spatial frequency of the NPS peak was lower with IR than with FBP for all modes. For all low and high-contrast inserts, the values for TTF at 50% were higher with IR than with FBP. For all inserts and all modes, the contrast values were similar with FBP and IR. For all low and high-contrast simulated lesions, d' values were higher with IR than with FBP for all modes. These results were also found on the 6 patients where the images were less noisy but smoother with IR-CBCT.
Conclusions: Using the IR algorithm for CBCT images in radiotherapy improve image quality and thus could increase the accuracy of online registration and limit positioning errors during processing.
Keywords: Cone Beam CT; image quality; iterative reconstruction; radiotherapy; task-based image quality assessment.