Oleracone F Alleviates Cognitive Impairment and Neuropathology in APPswe/PSEN1dE9 Mice by Reducing the Expression of Vascular Cell Adhesion Molecule and Leukocyte Adhesion to Brain Vascular Endothelial Cells

Int J Mol Sci. 2023 Jan 20;24(3):2056. doi: 10.3390/ijms24032056.

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disease and the blood-brain barrier dysfunction has been suggested as a key pathological feature of the disease. Our research group successfully established a synthetic protocol for oleracones, a novel series of flavonoids isolated from the plant extract of Portulaca oleracea L. (PO). PO extract was reported to have anti-inflammatory and antioxidant effects, enhancing cognitive function. Thus, we investigated the effects and mechanism of oleracones on cognition using AD model transgenic mice (Tg; APPswe/PSEN1dE9). Oleracone F treatment significantly improved memory dysfunction in Tg mice. Oleracone F decreased the number, burden, and immunoreactivity of amyloid plaques and amyloid precursor protein (APP) protein levels in the brains of Tg mice compared to wild-type mice. Oleracone F also alleviated inflammation observed in Tg mice brains. In vitro studies in human microvascular endothelial cells (HBMVECs) demonstrated that oleracones D, E, and F blocked the elevations in VCAM-1 protein induced by tumor necrosis factor-α (TNF-α), hindering leukocyte adhesion to HBMVECs. Taken together, our results suggest that oleracones ameliorated cognitive impairment by blocking TNF-α-induced increases in VCAM-1, thereby reducing leukocyte infiltration to the brain and modulating brain inflammation.

Keywords: Alzheimer’s disease; blood–brain barrier; oleracone; tumor necrosis factor-α; vascular cell adhesion molecule-1.

MeSH terms

  • Alzheimer Disease* / metabolism
  • Amyloid beta-Peptides / metabolism
  • Amyloid beta-Protein Precursor / genetics
  • Amyloid beta-Protein Precursor / metabolism
  • Animals
  • Brain / metabolism
  • Cognitive Dysfunction* / metabolism
  • Endothelial Cells / metabolism
  • Humans
  • Mice
  • Mice, Transgenic
  • Neurodegenerative Diseases* / metabolism
  • Tumor Necrosis Factor-alpha / metabolism
  • Vascular Cell Adhesion Molecule-1 / genetics
  • Vascular Cell Adhesion Molecule-1 / metabolism

Substances

  • Vascular Cell Adhesion Molecule-1
  • Tumor Necrosis Factor-alpha
  • Amyloid beta-Protein Precursor
  • Amyloid beta-Peptides