Metal-organic frameworks (MOFs) are crystalline materials that are formed by self-assembling organic linkers and metal ions with large specific areas and pore volumes. Their chemical tunability, structural diversity, and tailor-ability make them adaptive to decorate many substrate materials, such as biomass-derived carbon materials, and competitive in many environmental biosystems, such as biofuel cells, bioelectrocatalysts, microbial metal reduction, and fermentation systems. In this review, we surmised the recent progress of MOFs and MOF-derived materials and their applications in environmental biosystems. The behavior of MOFs and MOF-derived materials in different environmental biosystems and their influences on performance are described. The inherent mechanisms will guide the rational design of MOF-related materials and lead to a better understanding of their interaction with biocomponents.
Keywords: bioelectrocatalysis; biofuel cells; biomass-derived material decoration; metal–organic frameworks; microbial electron transfer.