Face Image Encryption Based on Feature with Optimization Using Secure Crypto General Adversarial Neural Network and Optical Chaotic Map

Sensors (Basel). 2023 Jan 27;23(3):1415. doi: 10.3390/s23031415.

Abstract

Demand for data security is increasing as information technology advances. Encryption technology based on biometrics has advanced significantly to meet more convenient and secure needs. Because of the stability of face traits and the difficulty of counterfeiting, the iris method has become an essential research object in data security research. This study proposes a revolutionary face feature encryption technique that combines picture optimization with cryptography and deep learning (DL) architectures. To improve the security of the key, an optical chaotic map is employed to manage the initial standards of the 5D conservative chaotic method. A safe Crypto General Adversarial neural network and chaotic optical map are provided to finish the course of encrypting and decrypting facial images. The target field is used as a "hidden factor" in the machine learning (ML) method in the encryption method. An encrypted image is recovered to a unique image using a modernization network to achieve picture decryption. A region-of-interest (ROI) network is provided to extract involved items from encrypted images to make data mining easier in a privacy-protected setting. This study's findings reveal that the recommended implementation provides significantly improved security without sacrificing image quality. Experimental results show that the proposed model outperforms the existing models in terms of PSNR of 92%, RMSE of 85%, SSIM of 68%, MAP of 52%, and encryption speed of 88%.

Keywords: biometrics; cryptography; deep learning; face feature encryption; image optimization; information security.

Grants and funding