Purpose: We developed and validated two parsimonious algorithms to predict the time of diagnosis of any stage of acute kidney injury (any-AKI) or moderate-to-severe AKI in clinically actionable prediction windows.
Materials and methods: In this retrospective single-center cohort of adult ICU admissions, we trained two gradient-boosting models: 1) any-AKI model, predicting the risk of any-AKI at least 6 h before diagnosis (50,342 admissions), and 2) moderate-to-severe AKI model, predicting the risk of moderate-to-severe AKI at least 12 h before diagnosis (39,087 admissions). Performance was assessed before disease diagnosis and validated prospectively.
Results: The models achieved an area under the receiver operating characteristic curve (AUROC) of 0.756 at six hours (any-AKI) and 0.721 at 12 h (moderate-to-severe AKI) prior. Prospectively, both models had high positive predictive values (0.796 and 0.546 for any-AKI and moderate-to-severe AKI models, respectively) and triggered more in patients who developed AKI vs. those who did not (median of 1.82 [IQR 0-4.71] vs. 0 [IQR 0-0.73] and 2.35 [IQR 0.14-4.96] vs. 0 [IQR 0-0.8] triggers per 8 h for any-AKI and moderate-to-severe AKI models, respectively).
Conclusions: The two AKI prediction models have good discriminative performance using common features, which can aid in accurately and informatively monitoring AKI risk in ICU patients.
Keywords: Acute kidney injury; Artificial intelligence; Machine learning; Prediction.
Copyright © 2023 Elsevier Inc. All rights reserved.