[Variation Characteristics and Source Apportionment of Atmospheric VOCs at Multi-sites in Zhengzhou]

Huan Jing Ke Xue. 2023 Feb 8;44(2):699-708. doi: 10.13227/j.hjkx.202203117.
[Article in Chinese]

Abstract

From July 2020 to June 2021, monthly offline sampling of atmospheric VOCs was carried out and analyzed at three urban sites and one suburban site in Zhengzhou. Then, the volume fraction levels, composition characteristics, reactivity, and source apportionment of atmospheric VOCs were discussed. The results showed that the volume fraction of atmospheric VOCs in Zhengzhou was (37.50±14.30)×10-9 during the sampling period, and the proportion of components was represented by alkanes (33%)>OVOCs (24%)>halogenated hydrocarbons (23%)>aromatic hydrocarbons (8%)>alkenes (7%)>alkynes (4%)>sulfides (1%). The seasonal variation characteristics were winter>autumn>summer>spring, and the monthly average value of VOCs had the highest value in January and the lowest value in May; the spatial variation characteristics were Zhengzhou University (ZD)>Jiancezhan (JCZ)>Jingkaiqu (JKQ)>Gangli Reservoir (GLR). The average·OH loss rate (L·OH) was 4.24 s-1, and the average ozone formation potential (OFP) was 172.27 μg·m-3; the top ten species of L·OH and OFP at each site and in each season were dominated by alkenes, OVOCs, and aromatic hydrocarbons. The results of positive matrix factorization (PMF) showed that the main sources of VOCs were vehicle emissions (28%), solvent utilization (24%), industrial emissions (24%), and oil and gas volatilization (19%) and plant emissions (5%).

Keywords: Zhengzhou; ozone formation potential (OFP); source apportionment; volatile organic compounds (VOCs); ·OH loss rate (L·OH).

Publication types

  • English Abstract