Microbial rhodopsin is a family of photoreceptive membrane proteins that commonly consist of a seven-transmembrane domain and a derivative of vitamin-A, retinal, as a chromophore. In 2011, archaeorhodopsin-3 (AR3) was shown to exhibit voltage-dependent fluorescence changes in mammalian cells. Since then, AR3 and its variants have been used as genetically encoded voltage indicators, in which mostly intense laser stimulation (1-1000 W/cm2) is used for the detection of dim fluorescence of rhodopsin, leading to high spatiotemporal resolution. However, intense laser stimulation potentially causes serious cell damage, particularly during long-term imaging over minutes. In this study, we present the successful detection of voltage-sensitive fluorescence of AR3 and its high fluorescence mutant Archon1 in a variety of mammalian cell lines using low-intensity light emitting diode stimulation (0.15 W/cm2) with long exposure time (500 ms). The detection system enables real-time imaging of drug-induced slow changes in voltage within the cells for minutes harmlessly and without fluorescence bleaching. Therefore, we demonstrate a method to quantitatively understand the dynamics of slow changes in membrane voltage on long time scales.
© 2023 The Authors. Published by American Chemical Society.