Newborns with congenital heart disease undergoing cardiac surgery are at risk of neurodevelopmental impairment with limited understanding of the impact of intra-operative cardiopulmonary bypass (CPB), deep hypothermia and selective cerebral perfusion on the brain. We hypothesized that a novel ultrasound technique, ultrafast power Doppler (UPD), can assess variations of cerebral blood volume (CBV) in neonates undergoing cardiac surgery requiring CPB. UPD was performed before, during and after surgery in newborns with hypoplastic left heart syndrome undergoing a Norwood operation. We found that global CBV was not significantly different between patients and controls (P = 0.98) and between pre- and post-surgery (P = 0.62). UPD was able to monitor changes in CBV throughout surgery, revealing regional differences in CBV during hypothermia during which CBV correlated with CPB flow rate (R2 = 0.52, P = 0.021). Brain injury on post-operative magnetic resonance imaging was observed in patients with higher maximum variation in CBV. Our findings suggest that UPD can quantify global and regional brain perfusion variation during neonatal cardiac surgery with this first intra-operative application demonstrating an association between CBV and CPB flow rate, suggesting loss of autoregulation. Therefore, the measurement of CBV by UPD could enable optimization of cerebral perfusion during cardiac surgery in neonates. KEY POINTS: The impact of cardiopulmonary bypass (CPB) on the neonatal brain undergoing cardiac surgery is poorly understood. Ultrafast power Doppler (UPD) quantifies cerebral blood volume (CBV), a surrogate of brain perfusion. CBV varies throughout CPB surgery and is associated with variation of the bypass pump flow rate during deep hypothermia. Association between CBV and bypass pump flow rate suggests loss of cerebrovascular autoregulatory processes. Quantitative monitoring of cerebral perfusion by UPD could provide a direct parameter to optimize CPB flow rate.
Keywords: brain perfusion; cardiopulmonary bypass; deep hypothermia; ultrafast power Doppler.
© 2023 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.