Peroxiredoxin 2 is required for the redox mediated adaptation to exercise

Redox Biol. 2023 Apr:60:102631. doi: 10.1016/j.redox.2023.102631. Epub 2023 Feb 9.

Abstract

Exercise generates a site-specific increase in Reactive Oxygen Species (ROS) within muscle that promotes changes in gene transcription and mitochondrial biogenesis, required for the beneficial adaptive response. We demonstrate that Peroxiredoxin 2 (Prdx2), an abundant cytoplasmic 2-Cys peroxiredoxin, is required for the adaptive hormesis response to physiological levels of H2O2 in myoblasts and following exercise in C. elegans. A short bolus addition of H2O2 increases mitochondrial capacity and improves myogenesis of cultured myoblasts, this beneficial adaptive response was suppressed in myoblasts with decreased expression of cytoplasmic Prdxs. Moreover, a swimming exercise protocol in C. elegans increased mitochondrial content, fitness, survival and longevity in wild type (N2) worms. In contrast, prdx-2 mutant worms had decreased fitness, disrupted mitochondria, reduced survival and lifespan following exercise. Global proteomics following exercise identified distinct changes in the proteome of N2 and prdx-2 mutants. Furthermore, a redox proteomic approach to quantify reversible oxidation of specific Cysteine residues revealed a more reduced redox state in the non-exercised prdx-2 mutant strain that become oxidized following exercise. In contrast, specific Cys residues from regulatory proteins become more reduced in the N2 strain following exercise, establishing the key regulatory role of PRDX-2 in a redox signalling cascade following endogenous ROS generation. Our results demonstrate that conserved cytoplasmic 2-Cys Peroxiredoxins are required for the beneficial adaptive response to a physiological redox stress.

Keywords: C. elegans; Exercise; Hormesis; Mitochondria; Peroxiredoxins.

MeSH terms

  • Animals
  • Caenorhabditis elegans / metabolism
  • Caenorhabditis elegans Proteins* / metabolism
  • Cysteine / metabolism
  • Hydrogen Peroxide / metabolism
  • Oxidation-Reduction
  • Peroxiredoxins* / genetics
  • Peroxiredoxins* / metabolism
  • Proteomics
  • Reactive Oxygen Species / metabolism

Substances

  • Peroxiredoxins
  • Reactive Oxygen Species
  • Hydrogen Peroxide
  • Cysteine
  • PRDX-2 protein, C elegans
  • Caenorhabditis elegans Proteins