Stimuli-responsive biomaterials may be used to better control the release of bioactive molecules or cells for applications involving drug delivery and controlled cell release. In this study, we developed a Factor Xa (FXa)-responsive biomaterial capable of controlled release of pharmaceutical agents and cells from in vitro culture. FXa-cleavable substrates were formed as hydrogels that degraded in response to FXa enzyme over several hours. Hydrogels were shown to release both heparin and a model protein in response to FXa. Additionally, RGD-functionalized FXa-degradable hydrogels were used to culture mesenchymal stromal cells (MSCs), enabling FXa-mediated cell dissociation from hydrogels in a manner that preserved multicellular structures. Harvesting MSCs using FXa-mediated dissociation did not influence their differentiation capacity or indoleamine 2,3-dioxygenase (IDO) activity (a measure of immunomodulatory capacity). In all, this FXa-degradable hydrogel is a novel responsive biomaterial system that may be used for on-demand drug delivery, as well as for improving processes for in vitro culture of therapeutic cells.
Keywords: Factor Xa; controlled drug delivery; mesenchymal stromal cells; stimuli-responsive biomaterials.
© 2023 Wiley Periodicals LLC.