Patients with Schwannomatosis (SWN) overwhelmingly present with intractable, debilitating chronic pain. There are no effective therapies to treat SWN. The drivers of pain response and tumor progression in SWN are not clear. The pain is not proportionally linked to tumor size and is not always relieved by tumor resection, suggesting that mechanisms other than mechanical nerve compression exist to cause pain. SWN research is limited by the lack of clinically-relevant models. Here, we established novel patient-derived xenograft (PDX) models, dorsal root ganglia (DRG) imaging model, and combined with single-cell resolution intravital imaging and RNASeq, we discovered: i) schwannomas on the peripheral nerve cause macrophage influx into the DRG, via secreting HMGB1 to directly stimulate DRG neurons to express CCL2, the key macrophage chemokine, ii) once recruited, macrophages cause pain response via overproduction of IL-6, iii) IL-6 blockade in a therapeutic setting significantly reduces pain but has modest efficacy on tumor growth, iv) EGF signaling is a potential driver of schwannoma growth and escape mechanism from anti-IL6 treatment, and v) combined IL-6 and EGFR blockade simultaneously controlled pain and tumor growth in SWN models. Our findings prompted the initiation of phase II clinical trial ( NCT05684692 ) for pain relief in patients with SWN.