Low-profile and transient ingestible electronic capsules for diagnostics and therapeutics can replace widely used yet invasive procedures such as endoscopies. Several gastrointestinal diseases such as reflux disease, Crohn's disease, irritable bowel syndrome, and eosinophilic esophagitis result in increased intercellular dilation in epithelial barriers. Currently, the primary method of diagnosing and monitoring epithelial barrier integrity is via endoscopic tissue biopsies followed by histological imaging. Here, a gelatin-based ingestible electronic capsule that can monitor epithelial barriers via electrochemical impedance measurements is proposed. Toward this end, material-specific transfer printing methodologies to manufacture soft-gelatin-based electronics, an in vitro synthetic disease model to validate impedance-based sensing, and tests of capsules using ex vivo using porcine esophageal tissue are described. The technologies described herein can advance next generation of oral diagnostic devices that reduce invasiveness and improve convenience for patients.
Keywords: epithelial barrier integrity; gelatin; impedance sensor; ingestible electronics.
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.