Background and purpose: Standard palliative radiotherapy workflows involve waiting times or multiple clinic visits. We developed and implemented a rapid palliative workflow using diagnostic imaging (dCT) for pre-planning, with subsequent on-couch target and plan adaptation based on a synthetic computed tomography (CT) obtained from cone-beam CT imaging (CBCT).
Materials and methods: Patients with painful bone metastases and recent diagnostic imaging were eligible for inclusion in this prospective, ethics-approved study. The workflow consisted of 1) telephone consultation with a radiation oncologist (RO); 2) pre-planning on the dCT using planning templates and mostly intensity-modulated radiotherapy; 3) RO consultation on the day of treatment; 4) CBCT scan with on-couch adaptation of the target and treatment plan; 5) delivery of either scheduled or adapted treatment plan. Primary outcomes were dosimetric data and treatment times; secondary outcome was patient satisfaction.
Results: 47 patients were enrolled between December 2021 and October 2022. In all treatments, adapted treatment plans were chosen due to significant improvements in target coverage (PTV/CTV V95%, p-value < 0.005) compared to the original treatment plan calculated on daily anatomy. Most patients were satisfied with the workflow. The average treatment time, including consultation and on-couch adaptive treatment, was 85 minutes. On-couch adaptation took on average 30 min. but was longer in cases where the automated deformable image registration failed to correctly propagate the targets.
Conclusion: A fast treatment workflow for patients referred for painful bone metastases was implemented successfully using online adaptive radiotherapy, without a dedicated CT simulation. Patients were generally satisfied with the palliative radiotherapy workflow.
Keywords: Adaptive radiotherapy; Clinical implementation; Ethos; Metastases; Palliative radiotherapy; Simulation CT free workflow.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.