Targeting neuropilin-1 abolishes anti-PD-1-upregulated regulatory T cells and synergizes with 4-1BB agonist for liver cancer treatment

Hepatology. 2023 Nov 1;78(5):1402-1417. doi: 10.1097/HEP.0000000000000320. Epub 2023 Feb 23.

Abstract

Background aims: Regulatory T cells (Tregs) are an obstacle to PD-1 blockade-mediated antitumor efficacy. However, the behaviors of Tregs response to anti-PD-1 in HCC and the characteristics of Tregs tissue adaptation from peripheral lymphoid tissues to the tumor are still unclear.

Approach results: Here, we determine that PD-1 monotherapy potentially augments the accumulation of tumor CD4 + Tregs. Mechanistically, anti-PD-1 mediates Tregs proliferation in lymphoid tissues rather than in the tumor. Increased peripheral Tregs burden replenishes intratumoral Tregs, raising the ratio of intratumoral CD4 + Tregs to CD8 + T cells. Subsequently, single-cell transcriptomics revealed that neuropilin-1 (Nrp-1) supports Tregs migration behavior, and the genes of Crem and Tnfrsf9 regulate the behaviors of the terminal suppressive Tregs. Nrp-1 + 4-1BB - Tregs stepwise develop to the Nrp-1 - 4-1BB + Tregs from lymphoid tissues into the tumor. Moreover, Treg-restricted Nrp1 depletion abolishes anti-PD-1-upregulated intratumoral Tregs burden and synergizes with the 4-1BB agonist to enhance the antitumor response. Finally, a combination of the Nrp-1 inhibitor and the 4-1BB agonist in humanized HCC models showed a favorable and safe outcome and evoked the antitumor effect of the PD-1 blockade.

Conclusion: Our findings elucidate the potential mechanism of anti-PD-1-mediated intratumoral Tregs accumulation in HCC and uncover the tissue adaptation characteristics of Tregs and identify the therapeutic potential of targeting Nrp-1 and 4-1BB for reprogramming the HCC microenvironment.

MeSH terms

  • CD8-Positive T-Lymphocytes
  • Carcinoma, Hepatocellular* / drug therapy
  • Carcinoma, Hepatocellular* / genetics
  • Carcinoma, Hepatocellular* / metabolism
  • Carcinoma, Hepatocellular* / pathology
  • Humans
  • Liver Neoplasms* / drug therapy
  • Liver Neoplasms* / genetics
  • Liver Neoplasms* / metabolism
  • Liver Neoplasms* / pathology
  • Neuropilin-1 / genetics
  • Programmed Cell Death 1 Receptor / genetics
  • T-Lymphocytes, Regulatory
  • Tumor Microenvironment* / genetics
  • Tumor Microenvironment* / immunology

Substances

  • Neuropilin-1
  • Programmed Cell Death 1 Receptor
  • NRP1 protein, human
  • PDCD1 protein, human
  • TNFRSF9 protein, human