To explain or not to explain?-Artificial intelligence explainability in clinical decision support systems

PLOS Digit Health. 2022 Feb 17;1(2):e0000016. doi: 10.1371/journal.pdig.0000016. eCollection 2022 Feb.

Abstract

Explainability for artificial intelligence (AI) in medicine is a hotly debated topic. Our paper presents a review of the key arguments in favor and against explainability for AI-powered Clinical Decision Support System (CDSS) applied to a concrete use case, namely an AI-powered CDSS currently used in the emergency call setting to identify patients with life-threatening cardiac arrest. More specifically, we performed a normative analysis using socio-technical scenarios to provide a nuanced account of the role of explainability for CDSSs for the concrete use case, allowing for abstractions to a more general level. Our analysis focused on three layers: technical considerations, human factors, and the designated system role in decision-making. Our findings suggest that whether explainability can provide added value to CDSS depends on several key questions: technical feasibility, the level of validation in case of explainable algorithms, the characteristics of the context in which the system is implemented, the designated role in the decision-making process, and the key user group(s). Thus, each CDSS will require an individualized assessment of explainability needs and we provide an example of how such an assessment could look like in practice.

Grants and funding

JA was supported by funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 777107 (PRECISE4Q). DV received funding from the European Union’s Horizon 2020 Research and Innovation Program ‘PERISCOPE: Pan European Response to the ImpactS of COvid-19 and future Pandemics and Epidemics’ under grant agreement no. 101016233, H2020-SC1-PHE-CORONAVIRUS-2020-2-RTD and from the European Union’s Connecting Europe Facility program ‘xAIM: eXplainable Artificial Intelligence for healthcare Management’ under grant agreement no. INEA/CEF/ICT/A2020/2276680, 2020-EU-IA-0098. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.