Wastewater surveillance of SARS-CoV-2 variants in October-November 2022 in Italy: detection of XBB.1, BA.2.75 and rapid spread of the BQ.1 lineage

Sci Total Environ. 2023 May 15:873:162339. doi: 10.1016/j.scitotenv.2023.162339. Epub 2023 Feb 21.

Abstract

This study adds insight regarding the occurrence and spread of SARS-CoV-2 Variants of Concern (VOCs) and Variants of Interest (VOIs) in Italy in October and November 2022, by testing urban wastewater collected throughout the country. A total of 332 wastewater samples were collected from 20 Italian Regions/Autonomous Provinces (APs) within the framework of national SARS-CoV-2 environmental surveillance. Of these, 164 were collected in the first week of October and 168 in the first week of November. A ∼1600 bp fragment of the spike protein was sequenced by Sanger (for individual samples) and long-read nanopore sequencing (for pooled Region/AP samples). In October, mutations characteristic of Omicron BA.4/BA.5 were detected in the vast majority (91 %) of the samples amplified by Sanger sequencing. A fraction of these sequences (9 %) also displayed the R346T mutation. Despite the low prevalence documented in clinical cases at the time of sampling, amino acid substitutions characteristic of sublineages BQ.1 or BQ.1.1 were detected in 5 % of sequenced samples from four Regions/APs. A significantly higher variability of sequences and variants was documented in November 2022, when the rate of sequences harbouring mutations of lineages BQ.1 and BQ1.1 increased to 43 %, and the number of Regions/APs positive for the new Omicron subvariant more than tripled (n = 13) compared to October. Moreover, an increase in the number of sequences with the mutation package BA.4/BA.5 + R346T (18 %), as well as the detection of variants never observed before in wastewater in Italy, such as BA.2.75 and XBB.1 (the latter in a Region where no clinical cases associated with this variant had ever been documented) was recorded. The results suggest that, as predicted by the ECDC, BQ.1/BQ.1.1 is rapidly becoming dominant in late 2022. Environmental surveillance proves to be a powerful tool for tracking the spread of SARS-CoV-2 variants/subvariants in the population.

Keywords: BA2.75; BQ.1; Omicron; SARS-CoV-2; Surveillance; Wastewater; XBB.1.

MeSH terms

  • COVID-19* / epidemiology
  • Humans
  • Italy
  • SARS-CoV-2 / genetics
  • Wastewater
  • Wastewater-Based Epidemiological Monitoring*

Substances

  • Wastewater

Supplementary concepts

  • SARS-CoV-2 variants