Here, we offer a roadmap for what might be studied next in understanding how EBV triggers MS. We focus on two areas: The first area concerns the molecular mechanisms underlying how clonal antibody in the CSF emanates in widespread molecular mimicry to key antigens in the nervous system including GlialCAM, a protein associated with chloride channels. A second and equally high priority in the roadmap concerns various therapeutic approaches that are related to blocking the mechanisms whereby EBV triggers MS. Therapies deserving of attention include clinical trials with antivirals and the development of 'inverse' vaccines based on nucleic acid technologies to control or to eradicate the consequences of EBV infection. High enthusiasm is given to continuation of ongoing clinical trials of cellular adoptive therapy to attack EBV-infected cells. Clinical trials of vaccines to EBV are another area deserving attention. These suggested topics involving research on mechanism, and the design, implementation and performance of well-designed trials are not intended to be an exhaustive list. We have splendid tools available to our community of medical scientists to tackle how EBV triggers MS and then to perhaps change the world with new therapies to potentially eradicate MS, as we have done with nearly complete success for poliomyelitis.
Keywords: Epstein–Barr virus; GlialCAM; molecular mimicry; multiple sclerosis.
© 2023 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.