Background: Breast cancer is the most common cancer worldwide, and triple-negative breast cancer (TNBC) has the worst prognosis. Standard systemic treatment includes chemotherapy and immunotherapy. Poly ADP-ribose polymerase (PARP) inhibitors are considered in breast cancer (BRCA) susceptibility genes mutated tumors. The role of antiangiogenic drugs is controversial. Immunotherapy with immune checkpoint inhibitor is now a standard of care for TNBC in the US, but its use in combination with anlotinib, an inhibitor of angiogenesis, on TNBC cells was never investigated.
Methods: We tested the effects of anlotinib and programmed cell death-ligand 1 (PD-L1) inhibitor on the proliferation, apoptosis, migration, and invasion of MDA-MB-468 and BT-549 TNBC cells through 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assays, cell apoptosis assay, wound healing and transwell matrix assays, and verified whether the combination of the two drugs had synergistic effect. Western blotting was used to detect the effect of anlotinib and PD-L1 inhibitor on the protein expression levels of PI3K, p-PI3K, AKT, p-AKT, Bcl-xl in MDA-MB-468 and BT-549 cells. The effects of anlotinib, PD-L1 inhibitor and the combination of the two drugs on the transplanted tumor of TNBC mice were tested by animal experiments.
Results: Anlotinib and PD-L1 inhibitor inhibited the proliferation and promote cell apoptosis of MDA-MB-468 and BT-549 cells, and the combination demonstrated the synergetic effect. Anlotinib and PD-L1 inhibitor inhibited cell migration and invasion, and the effect was strongest in the combination group. Both anlotinib and PD-L1 inhibitor reduced the expression of p-PI3K, p-AKT and Bcl-xl proteins in cells and the effects were the strongest in the combination group. Both anlotinib and PD-L1 inhibitor inhibited the growth of transplanted tumors in mice, and the combined group demonstrated the strongest growth suppression.
Conclusions: Anlotinib and PD-L1 inhibitor can inhibit cell proliferation, migration, and invasion of TNBC and promote cell apoptosis, and the two drugs show combined anti-tumor effects in vivo and in vitro. The combination of anlotinib and PD-L1 inhibitor may promote apoptosis of TNBC cells through PI3K/AKT/Bcl-xl signaling pathways, which might offer potential clinical treatment roles for these.
Keywords: PD-L1 inhibitor; Triple-negative breast cancer (TNBC); anlotinib; apoptosis; treatment.
2023 Annals of Translational Medicine. All rights reserved.