Bortezomib (BTZ) is a proteasome inhibitor serves as a first-line drug for multiple myeloma treatment. BTZ-induced peripheral neuropathy (BIPN) is the most common adverse effect of BTZ with an incidence as high as 40-60%. However, the pathological mechanisms underlying BIPN remain largely unclear. BTZ leads to dramatic Schwann cell demyelination in sciatic nerves. Previous studies implied that myelin debris was predominantly degraded via autophagy-lysosome pathway in Schwann cells. However, the association of autophagy with BIPN has not been made. Mice were treated with BTZ (2 mg/kg, i.v.) on Day1 and Day4 each week for continuous 4 weeks. BTZ-treated mice showed enhanced mechanical hyperalgesia, decreased tail nerve conduction and sciatic nerve demyelination. Unexpectedly, BTZ led to the accumulation of autophagic vesicles, LC3-II and p62 in the sciatic nerve. Moreover, BTZ blocked autophagic flux in RSC96 Schwann cells as determined by mcherry-GFP-LC3 assay, suggesting BTZ may impair lysosomal function rather than inducing autophagy in Schwann cells. BTZ significantly reduced the lysosomal activity in Schwann cells as determined by reduced LysoTracker Red and DQ-Red-BSA staining and increased the level of immature Cathepsin B (CTSB). Remarkably, lysosomal activators PP242 and Torin1, significantly reversed the blockage of autophagic flux by BTZ. We further verified that Torin1 rescued the demyelination, nerve conduction and reduced the mechanical hyperalgesia in BIPN mice. Additionally, Torin1 did not compromise the efficacy of BTZ in suppressing multiple myeloma RPMI8226 cell. Taken together, we identified that lysosomal dysfunction in Schwann cells caused by BTZ is involved in the BIPN pathology. Improved lysosomal function in Schwann cells can be a promising strategy for BIPN treatment.
Keywords: Autophagy; Bortezomib; Bortezomib-induced peripheral neuropathy; Lysosome; Torin1.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.