The mechanical properties, such as hardness and elastic modulus, of ultra-high molecular weight polyethylene (UHMWPE) composites for acetabular cup liner are improved by adding hydroxyapatite (HAp) and carbon nanotubes (CNT). However, the weak adhesion of HAp (H) and CNT (C) with UHMWPE (U) limits the enhancement of mechanical properties. Thus, the surface of these reinforcements is silane-treated to improve the adhesion with polymer via Si-O and C=O bonds, as evidenced from spectroscopy techniques. An increased dispersion and interfacial adhesion of functionalized HAp (fH) and CNT (fC) with the polymer matrix is confirmed by nearly two-fold increased reinforcement fraction (Rf: 0.55) of U-10 wt% fHAp-2 wt.% fCNT (U10fH2fC) in comparison to U-10 wt% HAp-2 wt.% CNT (U10H2C). Additionally, Voronoi Tessellation (VT) on SEM micrographs of U10H2C and U10fH2fC revealed the dispersion of functionalized CNTs in U10fH2fC with a center-to-center distance of 0.076 μm, which is 74% higher for unfunctionalized CNT in U10H2C. The multilength scale strengthening of the UHMWPE matrix is confirmed from atomic level modification via functionalization of fillers which effectively adhered to the polymer chain on a micro-scale level. A uniform distribution of CNTs rendered increased crystallinity (+28%) of U10fH2fC, which in turn resulted in significant improvement in bulk mechanical properties (18%, 49%, and 12% increased hardness (148.1 MPa), elastic modulus (3.51 GPa) and tensile elastic modulus (219.8 MPa), respectively) in comparison to that of U10H2C. Functionalized-HAp/CNT reinforced UHMWPE composites maintained its cytocompatibility in the MTT test and fluorescence microscopy, affirming their potential employment as acetabular cup liners for hip joint arthroplasty.
Keywords: Bio-composites; Carbon nanotube; Functionalization; Hydroxyapatite; Micro indentation; Tensile test; Ultra high molecular weight polyethylene.
Copyright © 2023 Elsevier Ltd. All rights reserved.