Aberration correction in diagnostic ultrasound: A review of the prior field and current directions

Z Med Phys. 2023 Aug;33(3):267-291. doi: 10.1016/j.zemedi.2023.01.003. Epub 2023 Feb 26.

Abstract

Medical ultrasound images are reconstructed with simplifying assumptions on wave propagation, with one of the most prominent assumptions being that the imaging medium is composed of a constant sound speed. When the assumption of a constant sound speed are violated, which is true in most in vivoor clinical imaging scenarios, distortion of the transmitted and received ultrasound wavefronts appear and degrade the image quality. This distortion is known as aberration, and the techniques used to correct for the distortion are known as aberration correction techniques. Several models have been proposed to understand and correct for aberration. In this review paper, aberration and aberration correction are explored from the early models and correction techniques, including the near-field phase screen model and its associated correction techniques such as nearest-neighbor cross-correlation, to more recent models and correction techniques that incorporate spatially varying aberration and diffractive effects, such as models and techniques that rely on the estimation of the sound speed distribution in the imaging medium. In addition to historical models, future directions of ultrasound aberration correction are proposed.

Keywords: Aberration; Aberration correction; Beamforming; Phase aberration; Speed of sound; Ultrasound.

Publication types

  • Review

MeSH terms

  • Algorithms*
  • Phantoms, Imaging
  • Ultrasonography / methods