This study analyzed the mechanism underlying the effect of the bonding current on the bonding interface during anodic bonding on the basis of the anodic bonding of PEG (polyethylene glycol)-based encapsulation materials and Al. By establishing an equivalent electrical model, the effects of various electrical parameters on the dynamic performance of the bonding current were evaluated, and the change law of the bonding current transfer function was analyzed. By examining the gap deformation model, the conditions for contact between the interface gaps and the bonding current pair were determined, and the influence law of the gap deformation of the bonding interface was derived. By assessing the effect of the bonding current on the ionic behavior, we found that the larger the bonding current, the greater the number of activated mobile ions in the bonding material and the higher the field strength in the cation depletion area. From the anodic bonding experiments, it was found that increasing the bonding voltage can increase the peak current and improve the bonding efficiency. The SEM image after bonding shows that the bonding interface had no obvious defects; the higher bonding voltage can result in a thicker bonding layer.
Keywords: anodic bonding; bonding current; bonding encapsulation; interface gap; polyethylene glycol; solid polymer electrolyte.