Epidemiological data on the effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on infant neurodevelopment trajectories are far from being sufficiently addressed. In this study, 1285 mother-child pairs were recruited during 2016-2017. A high-performance liquid chromatography-triple quadrupole mass spectrometer was used to measure 16 PFAS levels in cord serum. Ages and Stages Questionnaires were used to examine children's neurodevelopment at 2, 6, 12, and 24 months of age. Group-based trajectory models were applied to derive the neurodevelopmental trajectories. Children with relatively low scores from 2 to 24 months were classified into a low-score group and were used as a risk group in each domain. Multiple linear regression, logistic regression, and quantile-based g-computation were performed to assess associations of single or mixture PFAS exposures with neurodevelopment and trajectories. Perfluorooctane sulphonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and 6:2 chlorinated polyfluorooctane ether sulfonate (6:2Cl-PFESA) were detected in over 90 % samples. PFOA had the highest concentration (median: 4.61 μg/L). Each ln-unit (μg/L) increase of PFAS (e.g., PFOA, PFOS, PFHxS, 6:2Cl-PFESA) was associated with poor scores of communication domain at 6 months, with the effect size ranging from -0.69 to -0.44. PFOS (OR: 1.14, (1.03, 1.26), PFDA (OR:1.08, (1.02, 1.15)), PFHxS (OR:1.31, (1.12, 1.56)), and 6:2Cl-PFESA (OR:1.08, (1.00, 1.16)) were associated with an increased risk of being in the low-score group in the early childhood communication domain's trajectory. Each mixture quartile increment was associated with a 1.60 (-2.76, -0.45) decrease in communication domain scores of 6-month-old infants, and the mixture effect was mainly attributed to PFOS. Each mixture quartile increase was associated with a 1.23-fold (1.03, 1.46) risk of being in the low-score group of the communication domain, and the mixture effect was mainly attributed to PFOS. In conclusion, PFAS and their mixtures might adversely affect childhood neurodevelopment. The gender-specific associations existed in the above associations.
Keywords: Infant; Joint effects; Mixtures; Neurodevelopment; Perfluoroalkyl and polyfluoroalkyl substances; Trajectory.
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.