Antimicrobial resistance in Enterobacteriaceae is a public health problem. Rodents, can be a potential vector for transmission of multidrug resistant bacteria between animals, humans, and environment. The aim of our study was to assess the level of Enterobacteriaceae present in the intestines of rats collected from different locations in Tunisia, then to determine their antimicrobial susceptibility profiles, to screen extended spectrum β-lactamases-producing strains and determine the molecular mechanism of β-lactams resistance. Between July 2017 and June 2018, 55 strains of Enterobacteriaceae were isolated from 71 rats captured in various locations in Tunisia. Antibiotic susceptibility testing was performed using the disc diffusion method. Genes encoding ESBL and mcr genes were investigated by RT-PCR, standard PCR and sequencing when these genes were found. Fifty-five strains of Enterobacteriaceae were identified. The overall prevalence of ESBL production found in our study was 12.7 % (7/55) of which two E. coli strains were DDST positive, one isolated from a house-caught rat and one from the veterinary clinic and harbored the blaTEM-128 gene. In addition, the other five strains were DDST negative and harbored the blaTEM gene, including three strains isolated from collective restaurant (n = 2: blaTEM-163; n = 1: blaTEM-1), one strain isolated from the veterinary clinic (blaTEM-82), and one strain isolated from a house (blaTEM-128). The results of our study suggest that rodents may play a role in the spread of antimicrobial resistant E. coli, highlighting the need to protect the environment and monitor antimicrobial resistant bacteria in rodents to prevent their spread to other wildlife and humans.
Keywords: E. coli; ESBL; Enterobacteriaceae; Mus musculus; Rodents; Tunisia; bla(TEM-128).
Copyright © 2023. Published by Elsevier B.V.