Background: Alpha-mannosidosis is a rare lysosomal storage disorder, caused by decreased activity of α-D-mannosidase. This enzyme is involved in the hydrolysis of mannosidic linkages in N-linked oligosaccharides. Due to the mannosidase defect, undigested mannose-rich oligosaccharides (Man2GlcNAc - Man9GlcNAc) accumulating in cells are excreted in large quantities in urine.
Methods: In this work, we determined the levels of urinary mannose-rich oligosaccharides in a patient subjected to novel enzyme replacement therapy. Urinary oligosaccharides were extracted using solid phase extraction (SPE), labeled by fluorescent tag 2-aminobenzamide, and quantified by high-performance liquid chromatography (HPLC) with fluorescence detector (FLD). The identity of peaks was determined by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. In addition, the levels of urinary mannose-rich oligosaccharides were also quantified by 1H nuclear magnetic resonance (NMR) spectroscopy. The data were analyzed using one-tailed paired t-test and Pearson's correlation tests.
Results: Compared to levels before the administration of therapy, an approximately two-folds decrease in total mannose-rich oligosaccharides after one month of treatment was observed by NMR and HPLC. After four months, an approximately ten-folds significant decrease in total urinary mannose-rich oligosaccharides was detected, suggesting therapy effectiveness. A significant decrease in the levels of oligosaccharides with 7-9 mannose units was detected by HPLC.
Conclusions: The application of both HPLC-FLD and NMR in quantification of oligosaccharide biomarkers is a suitable approach for monitoring of therapy efficacy in alpha-mannosidosis patients.
Keywords: HPLC; NMR; alpha-mannosidosis; mass spectrometry; velmanase alpha.
© 2023 The Author(s). Published by IMR Press.