Identification of a cytotoxic factor from a non-pigmented entomopathogenic Serratia marcescens isolate toxic towards human carcinoma cell lines

Arch Microbiol. 2023 Mar 3;205(4):103. doi: 10.1007/s00203-023-03443-w.

Abstract

It has been reported that cell-free culture broths and some proteins from pigmented and non-pigmented Serratia spp. are cytotoxic towards cancerous and non-cancerous human cell lines. Looking for new molecules toxic against human cancerous cells but harmless towards normal human cells, the aim of this work was (a) to determine whether cell-free broths from the entomopathogenic non-pigmented S. marcescens 81 (Sm81), S. marcescens 89 (Sm89) and S. entomophila (SeMor4.1) presented cytotoxic activity towards human carcinoma cell lines; (b) to identify and purify the associated cytotoxic factor(s) and (c) to evaluate whether the cytotoxic factor(s) was cytotoxic towards non-cancerous human cells. This research was focussed on the observed morphology changes and the proportion of remaining viable cells after incubation in the presence of cell-free culture broths from the Serratia spp isolates to evaluate cytotoxic activity. The results showed that broths from both S. marcescens isolates presented cytotoxic activity and induced cytopathic-like effects on the human neuroblastoma CHP-212 and the breast cancer MDA-MB-231 cells. Slight cytotoxicity was observed in the SeMor4.1 broth. A serralysin-like protein of 50 kDa was identified in Sm81 broth as responsible for cytotoxic activity after purification by ammonium sulphate precipitation and ion-exchange chromatography followed by tandem-mass spectrometry (LC-MS/MS). The serralysin-like protein was toxic against CHP-212 (neuroblastoma), SiHa (human cervical carcinoma) and D-54 (human glioblastoma) cell lines in a dose-dependent manner and showed no cytotoxic activity in primary cultures of normal non-cancerous human keratinocytes and fibroblasts. Therefore, this protein should be evaluated for a potential use as an anticancer agent.

Keywords: Cytotoxicity; Cytotoxins; Protease; Serralysin; Virulence factors.

MeSH terms

  • Antineoplastic Agents*
  • Carcinoma*
  • Cell Line
  • Chromatography, Liquid
  • Humans
  • Neuroblastoma*
  • Serratia
  • Serratia marcescens
  • Tandem Mass Spectrometry

Substances

  • Antineoplastic Agents