In this study, amphiphilic chitosan (NPCS-CA) was synthesized by grafting quaternary phosphonium salt and cholic acid onto the chain of chitosan, aiming to develop an active edible film based on NPCS-CA and polyvinyl alcohol (PVA) incorporated with cinnamon essential oil (CEO) by the casting method. The chemical structure of the chitosan derivative was characterized by FT-IR, 1H NMR and XRD. Through the characterization of FT-IR, TGA, mechanical and barrier properties of the composite films, the optimal proportion of NPCS-CA/PVA was determined as 5/5. And, the tensile strength and elongation at break of the NPCS-CA/PVA (5/5) film with 0.4 % CEO were 20.32 MPa and 65.73 %, respectively. The results revealed that the NPCS-CA/PVA-CEO composite films exhibited an excellent ultraviolet barrier property at 200-300 nm and significantly reduced oxygen permeability, carbon dioxide permeability and water vapor permeability. Furthermore, the antibacterial property of film-forming solutions against E. coli, S. aureus, and C. lagenarium was distinctly improved with the increase of NPCS-CA/PVA proportion. And, the multifunctional films effectively extended the shelf-life of mangoes at 25 °C based on the characterization of surface changes and quality indexes. The NPCS-CA/PVA-CEO films could be developed as biocomposite food packaging material.
Keywords: Amphiphilic chitosan; Composite films; Packaging material.
Copyright © 2023 Elsevier B.V. All rights reserved.