Background and aims: Hemodynamic and plaque characteristics can be analyzed using coronary CT angiography (CTA). We aimed to explore long-term prognostic implications of hemodynamic and plaque characteristics using coronary CT angiography (CTA).
Methods: Invasive fractional flow reserve (FFR) and CTA-derived FFR (FFRCT) were undertaken for 136 lesions in 78 vessels and followed-up to 10 years until December 2020. FFRCT, wall shear stress (WSS), change in FFRCT across the lesion (ΔFFRCT), total plaque volume (TPV), percent atheroma volume (PAV), and low-attenuation plaque volume (LAPV) for target lesions [L] and vessels [V] were obtained by independent core laboratories. Their collective influence was evaluated for the clinical endpoints of target vessel failure (TVF) and target lesion failure (TLF).
Results: During a median follow-up of 10.1 years, PAV[V] (per 10% increase, HR 2.32 [95% CI 1.11-4.86], p = 0.025), and FFRCT[V] (per 0.1 increase, HR 0.56 [95% CI 0.37-0.84], p = 0.006) were independent predictors of TVF for the per-vessel analysis, and WSS[L] (per 100 dyne/cm2 increase, HR 1.43 [1.09-1.88], p = 0.010), LAPV[L] (per 10 mm3 increase, HR 3.81 [1.16-12.5], p = 0.028), and ΔFFRCT[L] (per 0.1 increase, HR 1.39 [1.02-1.90], p = 0.040) were independent predictors of TLF for the per-lesion analysis after adjustment for clinical and lesion characteristics. The addition of both plaque and hemodynamic predictors improved the predictability for 10-year TVF and TLF of clinical and lesion characteristics (all p < 0.05).
Conclusions: Vessel- and lesion-level hemodynamic characteristics, and vessel-level plaque quantity, and lesion-level plaque compositional characteristics assessed by CTA offer independent and additive long-term prognostic value.
Trial registration: ClinicalTrials.gov NCT01189331.
Keywords: Fractional flow reserve; Long-term prognosis; Low-attenuation plaque; Percent atheroma volume; Total plaque volume; Wall shear stress.
Copyright © 2023 Elsevier B.V. All rights reserved.