Intraoperative optical coherence tomography is still not overly pervasive in routine ophthalmic surgery, despite evident clinical benefits. That is because today's spectral-domain optical coherence tomography systems lack flexibility, acquisition speed, and imaging depth. We present to the best of our knowledge the most flexible swept-source optical coherence tomography (SS-OCT) engine coupled to an ophthalmic surgical microscope that operates at MHz A-scan rates. We use a MEMS tunable VCSEL to implement application-specific imaging modes, enabling diagnostic and documentary capture scans, live B-scan visualizations, and real-time 4D-OCT renderings. The technical design and implementation of the SS-OCT engine, as well as the reconstruction and rendering platform, are presented. All imaging modes are evaluated in surgical mock maneuvers using ex vivo bovine and porcine eye models. The applicability and limitations of MHz SS-OCT as a visualization tool for ophthalmic surgery are discussed.
© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.