Human brain organoid model of maternal immune activation identifies radial glia cells as selectively vulnerable

Mol Psychiatry. 2023 Dec;28(12):5077-5089. doi: 10.1038/s41380-023-01997-1. Epub 2023 Mar 6.

Abstract

Maternal immune activation (MIA) during critical windows of gestation is correlated with long-term neurodevelopmental deficits in the offspring, including increased risk for autism spectrum disorder (ASD) in humans. Interleukin 6 (IL-6) derived from the gestational parent is one of the major molecular mediators by which MIA alters the developing brain. In this study, we establish a human three-dimensional (3D) in vitro model of MIA by treating induced pluripotent stem cell-derived dorsal forebrain organoids with a constitutively active form of IL-6, Hyper-IL-6. We validate our model by showing that dorsal forebrain organoids express the molecular machinery necessary for responding to Hyper-IL-6 and activate STAT signaling upon Hyper-IL-6 treatment. RNA sequencing analysis reveals the upregulation of major histocompatibility complex class I (MHCI) genes in response to Hyper-IL-6 exposure, which have been implicated with ASD. We find a small increase in the proportion of radial glia cells after Hyper-IL-6 treatment through immunohistochemistry and single-cell RNA-sequencing. We further show that radial glia cells are the cell type with the highest number of differentially expressed genes, and Hyper-IL-6 treatment leads to the downregulation of genes related to protein translation in line with a mouse model of MIA. Additionally, we identify differentially expressed genes not found in mouse models of MIA, which might drive species-specific responses to MIA. Finally, we show abnormal cortical layering as a long-term consequence of Hyper-IL-6 treatment. In summary, we establish a human 3D model of MIA, which can be used to study the cellular and molecular mechanisms underlying the increased risk for developing disorders such as ASD.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Autism Spectrum Disorder* / metabolism
  • Brain* / metabolism
  • Ependymoglial Cells / metabolism
  • Female
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Interleukin-6* / metabolism
  • Mice
  • Neuroglia / metabolism
  • Organoids* / metabolism
  • Pregnancy
  • Prenatal Exposure Delayed Effects / immunology
  • Prenatal Exposure Delayed Effects / metabolism
  • Prosencephalon / metabolism
  • Signal Transduction

Substances

  • Interleukin-6